|
上述直方图概念是基于图像像素值,其实对图像梯度、每个像素的角度、等一切图像的属性值,我们都可以建立直方图。这个才是直方图的概念真正意义,不过是基于图像像素灰度直方图是最常见的。
直方图最常见的几个属性:
- dims 表示维度,对灰度图像来说只有一个通道值dims=1
- bins 表示在维度中子区域大小划分,bins=256,划分为256个级别
- range 表示值得范围,灰度值范围为[0~255]之间

API学习
split(// 把多通道图像分为多个单通道图像
const Mat &src, //输入图像
Mat* mvbegin)// 输出的通道图像数组
calcHist(
const Mat* images,//输入图像指针
int images,// 图像数目
const int* channels,// 通道数
InputArray mask,// 输入mask,可选,不用
OutputArray hist,//输出的直方图数据
int dims,// 维数
const int* histsize,// 直方图级数
const float* ranges,// 值域范围
bool uniform,// true by default
bool accumulate// false by defaut
)

[C++] 纯文本查看 复制代码 /*
注意:
直方图的计算
*/
#include <opencv2/opencv.hpp>
#include <iostream>
using namespace std;
using namespace cv;
int main(int argc, char** argv) {
Mat src, dst;
src = imread("D:/IDE/opencv-3.1.0/demo.jpg");
if (!src.data) {
printf("加载图片异常\n");
return -1;
}
namedWindow("input", CV_WINDOW_AUTOSIZE);
imshow("input", src);
//分通道显示
vector<Mat> bgr_planes;
//把多通道图像分为多个单通道图像
split(src, bgr_planes);
//计算直方图
int histSize = 256;
float range[] = { 0,256 };
const float* thisRanges = { range };
Mat b_hist, g_hist, r_hist;
calcHist(&bgr_planes[0], 1, 0, Mat(), b_hist, 1, &histSize,&thisRanges, true, false);
calcHist(&bgr_planes[1], 1, 0, Mat(), g_hist, 1, &histSize, &thisRanges, true, false);
calcHist(&bgr_planes[2], 1, 0, Mat(), r_hist, 1, &histSize, &thisRanges, true, false);
//归一化
int hist_h = 400;
int hist_w = 512;
int bin_w = hist_w / histSize;
Mat histImge(hist_w, hist_h, CV_8UC3, Scalar(0, 0, 0 ));
normalize(b_hist, b_hist, 0, hist_h, NORM_MINMAX, -1, Mat());
normalize(g_hist, b_hist, 0, hist_h, NORM_MINMAX, -1, Mat());
normalize(r_hist, b_hist, 0, hist_h, NORM_MINMAX, -1, Mat());
//绘制直方图
for (int i = 1; i < histSize; i++)
{
line(
histImge,
Point((i - 1) * bin_w, hist_h - cvRound(b_hist.at<float>(i - 1))),
Point((i)*bin_w, hist_h - cvRound(b_hist.at<float>(i))),
Scalar(255, 0, 0), 2, LINE_AA
);
line(
histImge,
Point((i - 1) * bin_w, hist_h - cvRound(g_hist.at<float>(i - 1))),
Point((i)*bin_w, hist_h - cvRound(g_hist.at<float>(i))),
Scalar(0, 255, 0), 2, LINE_AA
);
line(
histImge,
Point((i - 1) * bin_w, hist_h - cvRound(r_hist.at<float>(i - 1))),
Point((i)*bin_w, hist_h - cvRound(r_hist.at<float>(i))),
Scalar(0, 0, 255), 2, LINE_AA
);
imshow("直方图效果", histImge);
}
waitKey(0);
return 0;
}
|
|